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An analysis of some of the energetic properties of the conventional minimal 
STO basis is used to suggest a new optimum set of exponential functions for 
use in molecular calculations. 
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In the famous paper of 1930 [1] proposing "Slaters Rules" for the estimation of 
approximate self-consistent atomic orbitals, Slater made use of three pieces of 
information: 

1) The asymptotic form for the solution of the Schr6dinger equation for the hydro- 
gen atom is 

r"- 1 exp ( -  ~r) 

for large values of r. 

2) The idea of "screening"-replacing the potential generated by a "shell" of 
electrons by a spherical average. 

3) The small amount of data on atomic calculations available at the time of 
writing. 

Slater's qualitative conclusions have remained unchallenged for nearly half a 
century - only quantitative changes have been made within his general framework: 

a) For reasons of computational convenience the "quantum number" n* of 

r"*- 1 exp ( -  ~r) 

is now almost invariably an integer [21. 



3 3 2  D . B .  C o o k  

b) The orbital exponents ~ can now be accurately optimized-no approximate 
rules are required [3]. 

The minimal basis of STOs provides (either explicitly or implicitly) the background 
for most ab initio or semi-empirical calculations of molecular electronic structure 
and so it is worthwhile to subject this basis to a careful examination. 

Taking points 1) to 3) above in reverse order, clearly b) has replaced 3) as a source 
of information. There can be no objection to 2) since it is the only way of defining 
"effective" analytical approximate AOs. However the argument for the use of 
STOs of form r ' -  1 exp ( -  (r) because they are the asymptotic form of the hydro- 
genic Schr6dinger equation does not, unfortunately, stand up to close examination. 
In the first place the asymptotic form (r'-1) takes over from the exact form 
(r~L]Z++ll(r)) at rather large values of r; there is, for example, still a 5 difference be- 
tween the two 2s forms at 20 bohrs from the nucleus. Secondly, it is the functional 
forms r ' -  1 exp ( -  ~r) and" 1.21 + l(r ) exp ( -  (r) which are asymptotically equivalent r LJ n + l  

at large r: that is they both solve the radial differential equation at large r. But in 
order to use the approximate forms as orbitab they must be normalized, not in the 
asymptotic region, but in all space. Thus at r=  100 bohrs the two 2s forms are 
essentially identical but normalization means that the corresponding orbitals 
differ by a factor of ~ .  It goes without saying of course that these enormous 
distances (20-100 bohrs) are of little consequence in the atomic energy or the 
interpretation of bonding. Classically, the electron at such large distances from the 
nucleus is moving extremely slowly. Indeed the kinetic energy value for an STO of 
quantum numbers n, I is always less than or equal to the hydrogenic value of~(1 2, 
being 

n + 2/(/+ 1) 
2n(n- 1) ~z ~<�89 

The average value of Z/r for the STO and hydrogenic orbitals are, however, the 
same; -Z~/n.  These considerations suggest that the use of a minimal basis of 
STOs may well lead to an imbalance between kinetic and potential energy and this 
analysis will be carried further using the virial theorem. 

Even the most casual comparison of the results of the use of a minimal basis of 
STOs [3] for the calculation of atomic structure with Hartree-Fock results 
shows some important differences. The restricted functional form of the STOs pre- 
vents the minimal basis from reproducing the Hartree-Fock total energy, of 
course, but the most striking difference between the two sets of calculations is in 
the orbital energies. In particular the minimal STO basis for the heavier members 
of the first transition series (Fe-Zn) gives extremely poor orbital energies (see 
Fig. 2), zero or positive for Ni, Cu, Zn. Thus although the computed total energy 
for the minimal basis is correct to a fraction of one per cent, the orbital energies, 
which in a certain sense, give an indication of the distribution of the energy are in 
error by anything up to 90~ in this important series. 

The variational method of optimizing the STO exponents in the minimal basis cal- 
culation ensures that the virial theorem for the total energy is obeyed to a high 
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degree of accuracy by the resulting wave function (5-figure accuracy is typical). 
Thus if the total energy is a sum of kinetic (T), nuclear attraction (V,) and electron 
repulsion (Ve) terms then 

E= T+ V,+ V e (1) 

and 

E =  - T= �89  re)  (2) 

thus 

E=  ( -  T+ r e ) -  Vo (3) 

But if the orbital energies are ~i and the orbital occupation numbers are nl then 

E= Z nie i -  Ve (4) 

Thus to a very good approximation the sum of the orbital energies is determined by 
the relative "'weights" of the two essentially positive contributions to the total 
energy - T+ V e. Now examination of the results of the minimal STO basis calcu- 
lation shows that the energy term ~ n~ e i is usually smaller than the corresponding 
Hartree-Fock result, in particular it is much smaller for the transition series. Since 
the total energies are comparable, this implies that the electron repulsion energy 
V, is too high in the approximate calculation; as we surmised, the kinetic and 
potential energy contributions are out of balance. This situation seems likely to be 
due to the use of the "higher" STOs which have low kinetic energy averages. 

The lowest STOs of each atomic symmetry type are identical to the hydrogenic 
orbitals and therefore have kinetic energy �89 the forms of the STOs of a given 1 
value are all of the same general appearance except for the ls function which differs 
from the other s functions in its behaviour at the origin. We have therefore used a 
minimal basis of STO functions consisting of only the ls, 2s, 2p, 3d forms to 
investigate the possibility of improving the energy distribution in atomic systems, 
while retaining, if possible, the very good total energy of the "usual" STO set. Pre- 
liminary exploratory work with the ground state of the sulphur atom was very 
encouraging-Table 1 gives the relevant data for comparison.1 It is readily seen 
from Table 1 that the new minimal basis gives better agreement with the Hartree- 
Fock orbital energies in every case. The total energy is also very slightly lower but 
this is a rather trivial effect. Encouraged by these results we have performed 
optimizations on the elements from the second two rows of the periodic table 
since the results in [3] are already optimum for the first row. Table 2 gives the 
optimum orbital exponents and total energies for these atoms and Figs. 1 and 2 
show the behaviour of the valence orbital energies compared to the Hartree-Fock 
and the conventional minimal basis. 

There are two general points to be made about the results. Firstly there is an 
improvement in orbital energies in going from the conventional minimal basis to 

The last column of  Table 1 verifies our conjecture about  the unique nature of  the ls AO total 
energy is poorer al though there is some improvement  in some orbital energies. 
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Table  1 Energy  quant i t i es  for  the g r o u n d  s ta te  of  the S a t o m  

D. B. C o o k  

Orb i t a l  energies  HF"  Best STO [3] ls ,  2s, 2p Is, 2p 

l s  - 9 2 . 0 0 4 6  - 9 1 . 8 8 4 2  - 9 1 . 9 3 4 6  - 9 1 . 9 9 0 3  

2s - 9 . 0 0 4 5  - 8.7708 - 8 . 8 2 0 1  - 8 . 4 0 4 9  

2p - 6.6827 - 6.4362 - 6 . 4 8 4 3  - 6 . 5 9 8 5  
3s - 0 . 8 7 9 6  - 0 . 8 1 1 7  ~6 .8517  - 0 . 7 4 3 4  
3p - 0 . 4 3 7 4  - 0 . 3 8 7 1  - 0 . 4 3 3 5  - 0 . 4 5 5 2  

To ta l  Ene rgy  - 3 9 7 . 5 0 5  - 396.628 - 3 9 6 . 6 4 1  - 3 9 5 . 3 4 5  

a N u m e r i c a l  H a r t r e e - F o c k  results  are given in : Mann ,  J. B. : Technica l  Repo r t  LA-3690. Un ive r s i ty  of  

Ca l i fo rn ia :  Los A l a m o s  Scientific L a b o r a t o r y  1967, however  the open-shel l  o rb i ta l  energies differ f rom 

the ana ly t ica l  R o o t h a a n - H a r t r e e  F o c k  ca lcu la t ions  g iven in Clement i ,  E. : Suppl.  I B M  J. Res. 

Develop.  9, 2 (1965) p r e s u m a b l y  due to the a rb i t ra r iness  in the def ini t ion of  the open-shel l  F o c k  
ope ra to r  (see: M c W e e n y ,  R. :  Chem.  Phys. Let ters  35, 13 (1975)). The results  repor ted  here were 
ob t a ined  us ing  the same fo rma l i sm  as the C lement i  ca lcula t ions ,  therefore  in Tab le  I and  Figs.  1 

and  2 " H F "  refers to the Clement i  ca lcula t ions .  This  choice  is for pu rposes  of  va l id  c o m p a r i s o n  and  

does not,  o f  course,  imp ly  tha t  C lemen t i ' s  resul ts  obey  a K o o p m a n s '  t heo rem or  tha t  M a n n ' s  do not.  

Table  2. Op t imized  exponen t s  for the Is, 2s, 2p, 3 d s e t  a 

A t o m  l s  2s "3s  . . . .  4 s"  2p "3p  . . . .  4p"  3d  Energy  

N a  10.6232 3.2775 0.5636 - -  3.4002 . . . .  161.1225 

M g  11.5993 3.6803 0.7612 - -  3.9112 . . . . .  198.8567 
A1 12.5800 4.0829 0.9642 - -  4.4861 0.9164 - -  - -  - 2 4 1 . 1 5 3 3  

Si 13.5618 4.4802 1.1601 - -  4.9723 0.9770 - -  - -  - 2 8 8 . 0 8 8 3  

P 14.5435 4.8762 1.3470 - -  5.4726 1.1226 - -  - -  - 3 3 9 . 9 0 7 2  

S 15.5253 5.2721 1.5309 - -  5.9719 1.2655 - - -  - 3 9 6 . 6 4 1 1  

C1 16.5066 5.6673 1.7095 - -  6.4697 1.4184 - -  - -  - 4 5 8 . 5 5 7 7  

A r  17.4881 6.0626 1.8834 - -  6.9651 1.5767 - -  - -  - 5 2 5 . 8 2 4 3  
K 18.4688 6.4437 2.1026 0.5806 7.4629 1.8129 - -  - -  - 5 9 8 . 0 8 2 0  

Ca  19.4480 6.8113 2.3120 0.6322 7.9613 2.0508 - - -  - 6 7 5 . 5 7 3 6  
Sc 20.4300 7.2084 2.5118 0.6617 8.4627 2.2379 - -  2.4621 - 7 5 8 . 3 4 3 4  

Ti  21.4114 7.6054 2.6791 0.6736 8.9620 3.3992 - -  2.7796 - 8 4 6 . 7 6 3 0  
V 22.3939 8.0059 2.8524 0.6890 9.4606 2.5646 - -  3.0484 1940.9306 
Cr  23.3783 8.4086 3.0371 0.7006 9.9572 2.7275 - -  3.2978 - 1040.9792 

M n  24.3602 8.8100 3.2000 0.7149 10.4556 2.8839 - -  3.5504 - 1147.0974 
Fe 25.3416 9.2072 3.3501 0.7333 10.9551 3.0434 - -  3.7687 - 1259.0929 

Co 26.3247 9.6087 3.5140 0.7465 11.4528 3.1989 - -  3.9930 - 1377.4023 

Ni  27.3075 10.0099 3.6726 0.7605 11.9494 3.3567 - -  4.2157 - 1 5 0 2 . 0 9 9 4  
Cu 28.2906 10.4120 3.8314 0.7734 12.4462 3.5105 - -  4.4386 - 1 6 3 3 . 3 1 5 6  
Zn 29.2737 10.8199 4.0033 0.8196 12.9410 3.6587 - -  4.6612 - 1 7 7 1 . 2 5 4 0  
G a  30.2606 11.2021 4.1915 0.9751 13.4333 3.8535 0.7539 5.0569 - 1 9 1 6 . 5 2 9 0  
Ge 31.2391 11.5593 4.3542 1.1215 13.9233 4.0499 0.8706 5.4412 - 2 0 6 8 . 4 4 3 5  
As  32.2278 11.9574 4.5888 1.2878 14,4061 4.2471 0.9044 5.8128 - 2 2 2 7 . 0 8 2 3  
Se 33.2068 12.3157 4.7764 1.4041 14.8916 4.4567 1.1248 6.1697 - 2 3 9 2 . 4 8 9 2  
Br 34.1842 12.6747 4.9326 1.5608 15,3801 4.6528 1.2401 6.5305 - 2 5 6 4 . 7 8 8 9  
Kr  35.1761 13.0791 5.1958 1.6421 15,8583 4.8447 1.3642 6.8815 - 2 7 4 4 , 1 0 7 8  
A t o m  l s  2s "3s  . . . .  4 s"  2p "3p  . . . .  4p"  3d  Energy  

aThe co lumns  label led  "3s" ,  "4s"  refer to  2s-type STO' s ;  those  label led  "3p" ,  " 4 p "  to 2p STO's.  
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Fig. 1. Orbital energies for the "valance orbitals" of the elements Na to Kr (excluding the transition 
series). Full line Hartree-Fock (see Footnote to Table 1), broken line this work, dotted line results of 
Ref. [3] 
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Fig. 2. Orbital energies of the 3d orbital in the first transition series (Sc to Zn). The lines are described in 
Fig. 1. (The 4s orbital energies are omitted as they are scarcely distinguishable on the scale used) 
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the Is, 2s, 2p, 3d basis - this improvement being most dramatic in the case of the 3d 
energies of the first transition series. Secondly the total energies of the two minimal 
bases are essentially the same: sometimes the result computed here is the lower, 
sometimes the result of [-3] is lower, the difference being very small indeed. Not- 
withstanding the first of these conclusions, the 3d orbital energies of the first transi- 
tion series are, absolutely speaking, still in extremely poor agreement with the HF  
values as can be seen from Fig. 2. (It is also incidentally the case that the Hartree- 
Fock orbital energies for these systems are in very poor agreement with experiment 
- they are generally a factor of 2 too tightly bound in the Hartree-Fock model.) 
Thus the use of a minimal basis of 3d STOs for these atoms in a molecular calcula- 
tion is almost guaranteed to give misleading results. Examination of the change in 
orbital energy with atomic number (for the minimal basis 3d energies) shows that 
even the wrong trends are given for changes in the population of the 3d levels. Pre- 
liminary work with the cobalt atom shows that the use of the ls, 2s, 2p, 3dminimal 
basis plus one extra 3d function gives orbital energies within one or two per cent of 
the Hartree-Fock values for all orbitals with a total energy two hartrees better than 
the minimal ls, 2s, 2p, 3d basis. The choice of optimum small bases of exponential 
functions for transition elements will be the subject of a later note. 

Finally it is perhaps worth noting that the molecular energy integrals involving the 
"lower" STOs are rather simpler to compute than the orbitals of higher n; so that 
there are considerable economies to be obtained by the use of the ls, 2s, 2p, 3d 
basis. For example, existing n =2  programs for CNDO, INDO etc. can be used 
without further modification for second row atoms. 
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